Learn how to move from exploring data to modeling it with confidence. In this course, you’ll build and interpret linear and logistic regression models in R to uncover relationships, make predictions, and quantify uncertainty.



Ce que vous apprendrez
Fit and interpret linear and logistic regression models to examine relationships between predictors and outcomes.
Evaluate model performance and recognize limitations such as overfitting.
Apply bootstrapping and hypothesis testing to quantify and communicate uncertainty in model results.
Compétences que vous acquerrez
- Catégorie : Data-Driven Decision-Making
- Catégorie : Statistical Inference
- Catégorie : Statistical Modeling
- Catégorie : Statistical Analysis
- Catégorie : Predictive Modeling
- Catégorie : Statistical Hypothesis Testing
- Catégorie : Probability & Statistics
- Catégorie : Data Analysis
- Catégorie : Regression Analysis
- Catégorie : R Programming
Détails à connaître

Ajouter à votre profil LinkedIn
octobre 2025
4 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 4 modules dans ce cours
In this module, you will learn how to describe relationships between variables using simple linear regression. You’ll practice fitting models, interpreting coefficients, and visualizing patterns to uncover meaningful insights from data. By the end of this module, you’ll know how to make predictions and identify when your model might not fit as well as you think.
Inclus
6 vidéos7 lectures1 devoir1 plugin
Real-world data is rarely simple. In this module, you’ll extend regression modeling to include multiple predictors and interaction effects. You’ll explore how adding variables improves model accuracy, how to interpret complex relationships, and how to avoid overfitting as your models become more sophisticated.
Inclus
3 vidéos4 lectures1 devoir1 plugin
Not all outcomes are numerical. In this module, you’ll learn how to model categorical outcomes (e.g., “yes/no” or “spam/not spam”) using logistic regression. You’ll discover how to calculate probabilities, classify outcomes, and assess the performance of your models. Along the way, you’ll explore how overfitting affects classification and reflect on how to interpret and communicate model predictions responsibly.
Inclus
5 vidéos6 lectures1 devoir1 plugin
Every model comes with uncertainty and understanding and communicating that uncertainty is what makes you a thoughtful data scientist. In this final module, you’ll explore bootstrapping and randomization methods to measure confidence in your results, conduct hypothesis tests, and communicate findings transparently. By the end, you’ll bring together your modeling and inference skills to draw clear, data-driven conclusions.
Inclus
4 vidéos5 lectures1 devoir1 plugin
Offert par
En savoir plus sur Data Analysis

Coursera Project Network
Statut : Essai gratuit
Coursera Project Network
Statut : Essai gratuitJohns Hopkins University
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,



