IBM
Science des données IBM Certificat Professionnel
IBM

Science des données IBM Certificat Professionnel

Préparez-vous à une carrière de scientifique des données. Développez des compétences prêtes à l'emploi - et des compétences incontournables en IA - pour une carrière en demande. Obtenez un titre de compétences auprès d'IBM. Aucune expérience préalable n'est requise.

IBM Skills Network Team
Dr. Pooja
Abhishek Gagneja

Instructeurs : IBM Skills Network Team

Inclus avec Coursera Plus

Obtenez une qualification professionnelle qui traduit votre expertise

(81,686 avis)

niveau Débutant
Aucune connaissance prérequise
4 mois à raison de 10 heures par semaine
Planning flexible
Obtenir une qualification professionnelle
Partagez votre expertise avec les employeurs
Obtenez une qualification professionnelle qui traduit votre expertise

(81,686 avis)

niveau Débutant
Aucune connaissance prérequise
4 mois à raison de 10 heures par semaine
Planning flexible
Obtenir une qualification professionnelle
Partagez votre expertise avec les employeurs

Ce que vous apprendrez

  • Maîtriser les compétences et les connaissances pratiques les plus récentes que les data scientists utilisent dans leurs rôles quotidiens

  • Apprendre les outils, langages et bibliothèques utilisés par les data scientists professionnels, notamment Python et SQL

  • Importer et nettoyer des ensembles de données, analyser et visualiser les données, et construire des modèles et des pipelines d'apprentissage automatique

  • Appliquez vos nouvelles compétences à des projets concrets et constituez un portefeuille de projets de données qui mettront en valeur vos compétences auprès des employeurs

Vue d'ensemble

Ce qui est inclus

Certificat partageable

Ajouter à votre profil LinkedIn

Enseigné en Anglais
146 exercices pratiques

Certificat professionnel - série de 12 cours

Ce que vous apprendrez

  • Définir la science des données et son importance dans le monde actuel axé sur les données.

  • Décrivez les différentes voies qui peuvent mener à une carrière dans la science des données.

  • Résumez les conseils donnés par des professionnels chevronnés de la science des données aux scientifiques qui débutent.

  • Expliquez pourquoi la science des données est considérée comme l'emploi le plus demandé au 21e siècle.

Compétences que vous acquerrez

Science des données, Big Data, Cloud Computing, Apprentissage automatique, Analyse des Données, Deep learning, Transformation numérique, Maîtrise des données, Intelligence artificielle, Prise de décision fondée sur les données et Data mining

Ce que vous apprendrez

  • Décrivez la boîte à outils du scientifique des données, qui comprend : Les bibliothèques et les paquets, les ensembles de données, les modèles d'apprentissage automatique et les outils Big Data.

  • Utiliser des langages couramment utilisés par les data scientists tels que Python, R et SQL.

  • Démontrer une connaissance pratique d'outils tels que Jupyter notebooks et RStudio et utiliser leurs différentes fonctionnalités.

  • Créer et gérer le code source pour la science des données en utilisant les dépôts Git et GitHub.

Compétences que vous acquerrez

Jupyter, GitHub, La programmation en R, Logiciel de Visualisation de Données, Apprentissage automatique, Git (Système de contrôle des versions), Outils de programmation informatique, Programmation en Python, Autres langages de programmation, R (logiciel), Environnement de développement, Big Data, Contrôle des versions, Programmation Statistique, Cloud Computing, IBM Cloud, Technologie Open source, Science des données et Langage de requête

Ce que vous apprendrez

  • Décrivez ce qu'est une méthodologie de science des données et pourquoi les scientifiques des données ont besoin d'une méthodologie.

  • Appliquer les six étapes de la méthodologie CRISP-DM (Cross-Industry Process for Data Mining) pour analyser une étude de cas.

  • Évaluer le modèle analytique approprié parmi les modèles prédictifs, descriptifs et de classification utilisés pour analyser une étude de cas.

  • Déterminez les sources de données appropriées pour votre méthodologie d'analyse de la science des données.

Compétences que vous acquerrez

Modélisation prédictive, Collecte de données, Analyse de valeur et de rentabilité, Nettoyage des données, Qualité des données, Ingénierie des caractéristiques, Modélisation des données, Méthodologies de développement de logiciels, Engagement des parties prenantes, Data mining, Jupyter, Examen par les pairs, Transformation de données, Commentaires des utilisateurs, Science des données, Exigences de l'entreprise, Traitement des données, Arbre de décision et Analyse des Données

Ce que vous apprendrez

  • Développer une compréhension fondamentale de la programmation Python en apprenant la syntaxe de base, les types de données, les expressions, les variables et les opérations sur les chaînes de caractères.

  • Appliquer la logique de programmation Python en utilisant les structures de données, les conditions et les branchements, les boucles, les fonctions, la gestion des exceptions, les objets et les classes.

  • Démontrer une compétence dans l'utilisation des bibliothèques Python telles que Pandas et Numpy et dans le développement de code à l'aide des Bloc-notes Jupyter.

  • Accéder et extraire des données basées sur le web en travaillant avec des API REST à l'aide de requêtes et en effectuant du web scraping avec BeautifulSoup.

Compétences que vous acquerrez

Programmation en Python, Pandas (paquetage Python), Web scraping, NumPy, structures de données, Interface de programmation d'application (API), Jupyter, JSON, Manipulation de données, Programmation orientée objet (POO), Scripting, Principes de programmation, Analyse des Données, Traitement des données, Restful API, Importation/exportation de données, Automatisation et Programmation Informatique

Ce que vous apprendrez

  • Jouez le rôle d'un Data Scientist / Data Analyst travaillant sur un projet réel.

  • Démontrez vos compétences en Python - le langage de prédilection pour la science et l'analyse des données.

  • Appliquer les principes fondamentaux de Python, les structures de données Python et travailler avec des données en Python.

  • Construire un tableau de bord en utilisant Python et des bibliothèques comme Pandas, Beautiful Soup et Plotly en utilisant un notebook Jupyter.

Compétences que vous acquerrez

Web scraping, Analyse des Données, Manipulation de données, Programmation en Python, Traitement des données, Science des données, Matplotlib, Tableau de bord, Jupyter, Collecte de données et Pandas (paquetage Python)

Ce que vous apprendrez

  • Analyser les données d'une base de données en utilisant SQL et Python.

  • Créer une base de données relationnelle et travailler avec plusieurs tables à l'aide de commandes DDL.

  • Construire des requêtes SQL de niveau basique à intermédiaire en utilisant des commandes DML.

  • Composez des requêtes plus puissantes avec des techniques SQL avancées telles que les vues, les transactions, les procédures stockées et les jointures.

Compétences que vous acquerrez

SQL, Pandas (paquetage Python), Bases de données relationnelles, Analyse des Données, Jupyter, Bases de données, Manipulation de données, Programmation en Python, Procédure stockée, Traitement des transactions et Langage de requête

Ce que vous apprendrez

  • Construire des programmes Python pour nettoyer et préparer les données pour l'analyse en traitant les valeurs manquantes, les incohérences de formatage, la normalisation et le binning

  • Analyser des ensembles de données du monde réel par le biais de l'analyse exploratoire des données (AED) à l'aide de bibliothèques telles que Pandas, NumPy et SciPy pour découvrir des modèles et des idées

  • Appliquer des techniques d'exploitation des données en utilisant des dataframes pour organiser, résumer et interpréter les distributions de données, l'analyse de corrélation et les pipelines de données

  • Données en cours d'utilisation et évaluation de modèles de régression à l'aide de Scikit-learn, et utilisation de ces modèles pour générer des prédictions et soutenir la prise de décision basée sur les données

Compétences que vous acquerrez

Analyse de régression, Pandas (paquetage Python), Scikit-learn (Bibliothèque d'Apprentissage automatique), NumPy, Nettoyage des données, Analyse exploratoire des données (AED), Transformation de données, Modélisation prédictive, Importation/exportation de données, Manipulation de données, Data wrangling, Pipelines de données, Analyse des Données, Matplotlib, Prise de décision fondée sur les données, Analyse statistique, Ingénierie des caractéristiques, Visualisation de Données et Programmation en Python

Ce que vous apprendrez

  • Mettre en œuvre des techniques de visualisation de données et des tracés à l'aide de bibliothèques Python, telles que Matplotlib, Seaborn et Folium, afin de raconter une histoire stimulante

  • Créer différents types de graphiques et de diagrammes, tels que des diagrammes linéaires, des diagrammes de surface, des histogrammes, des diagrammes à barres, des diagrammes circulaires, des diagrammes en boîte, des diagrammes de dispersion et des diagrammes à bulles

  • Créez des visualisations avancées telles que des graphiques en gaufre, des nuages de mots, des diagrammes de régression, des cartes avec marqueurs et des cartes choroplèthes

  • Générez des tableaux de bord interactifs contenant des diagrammes de dispersion, des diagrammes linéaires, des diagrammes à barres, des diagrammes à bulles, des diagrammes circulaires et des diagrammes en étoile à l'aide de la structure Dash et de la bibliothèque Plotly

Compétences que vous acquerrez

Matplotlib, Visualisation interactive des données, Plotly, Histogramme, Diagrammes de dispersion, Seaborn, Graphiques en boîte, Présentation des données, Tableau de bord, Analyse des Données, Pandas (paquetage Python), Logiciel de Visualisation de Données, Cartes de chaleur, Visualisation de Données, Programmation en Python et Information et technologie géospatiales

Ce que vous apprendrez

  • Expliquer les concepts clés, les outils et les rôles impliqués dans l'apprentissage automatique, y compris les techniques d'apprentissage supervisé et non supervisé.

  • Appliquer les algorithmes de base de l'apprentissage automatique tels que la régression, la classification, le clustering et la réduction de dimensionnalité en utilisant Python et Scikit-learn.

  • Évaluer les performances du modèle en utilisant des mesures appropriées, des stratégies de validation et des techniques d'optimisation.

  • Construisez et évaluez des solutions d'apprentissage automatique de bout en bout sur des ensembles de données du monde réel grâce à des laboratoires, des projets et des évaluations pratiques.

Compétences que vous acquerrez

Apprentissage automatique, Apprentissage supervisé, Analyse de régression, Apprentissage non supervisé, Réduction de dimensionnalité, Modélisation prédictive, Apprentissage automatique appliqué, Scikit-learn (Bibliothèque d'Apprentissage automatique), Ingénierie des caractéristiques, Arbre de classification et de régression (CART), Programmation en Python, Analyse statistique et Algorithmes d'apprentissage automatique

Ce que vous apprendrez

  • Démontrer sa maîtrise des techniques de science des données et d'apprentissage automatique à l'aide d'un ensemble de données réelles et préparer un rapport pour les parties prenantes.

  • Appliquez vos compétences à la collecte et au traitement des données, à l'analyse exploratoire des données, au développement de modèles de visualisation des données et à l'évaluation des modèles

  • Écrire du code Python pour créer des modèles d'apprentissage automatique, notamment des machines à vecteurs de support, des classificateurs d'arbres de décision et des voisins les plus proches

  • Évaluer les résultats des modèles d'apprentissage automatique pour l'analyse prédictive, comparer leurs forces et leurs faiblesses et identifier le modèle optimal.

Compétences que vous acquerrez

Analyse exploratoire des données (AED), Data wrangling, Analyse des Données, Collecte de données, Apprentissage automatique, Web scraping, Plotly, Modélisation prédictive, Présentation des données, Prise de décision fondée sur les données, Modélisation statistique, Pandas (paquetage Python), GitHub et Science des données

Ce que vous apprendrez

  • Exploitez les outils d'IA générative, tels que GPT 3.5, ChatCSV et tomat.ai, mis à la disposition des Data Scientists pour l'interrogation et la préparation des données

  • Examinez les scénarios du monde réel dans lesquels l'IA générative peut améliorer les flux de travail de la science des données

  • Mettre en pratique les compétences en IA générative dans des laboratoires et des projets pratiques en générant et en augmentant des ensembles de données pour des cas d'utilisation spécifiques

  • Appliquer des techniques d'IA générative dans le développement et l'affinement de modèles d'apprentissage automatique

Compétences que vous acquerrez

IA générative, IA responsable, Logiciel de Visualisation de Données, Ingénierie des caractéristiques, Synthèse des données, Analyse exploratoire des données (AED), Prompt engineering, Science des données, Analyse des Données, Modélisation prédictive, Traitement du langage naturel (NLP) et Éthique des données

Ce que vous apprendrez

  • Décrivez le rôle d'un scientifique des données et quelques options de carrière ainsi que les perspectives d'avenir dans ce domaine.

  • Expliquer comment jeter les bases d'une recherche d'emploi, y compris la recherche d'offres d'emploi, la rédaction d'un curriculum vitae et la création d'un portfolio.

  • Résumez ce à quoi un candidat peut s'attendre au cours d'un cycle d'entretien d'embauche typique, les différents types d'entretiens et la manière de se préparer aux entretiens.

  • Expliquez comment mener un entretien efficace, y compris les techniques pour répondre aux questions et comment faire une présentation personnelle professionnelle.

Compétences que vous acquerrez

Compétences en matière d'entretien, Réseautage professionnel, Science des données, Communication, Recrutement, Recherche sur les entreprises, Développement professionnel, Analyse de l'emploi, Gestion de portefeuille, Connaissance de l'entreprise, des produits et des services, Résolution de problèmes, Programmation en Python, Écrire, Analyse des Données et Présentations

Obtenez un certificat professionnel

Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.

Préparer un diplôme

Lorsque vous aurez terminé ce site Certificat Professionnel, vous pourrez peut-être faire reconnaître vos acquis si vous êtes admis et si vous vous inscrivez à l'un des programmes d'études en ligne suivants.¹

 
Logo de l’ACE

Ce Certificat Professionnel bénéficie d’une recommandation par l’ACE®. Il donne droit à des crédits universitaires dans les établissements d’enseignement supérieur américains participants. Note : La décision d’accepter des recommandations de crédits spécifiques est du ressort de chaque institution. 

Instructeurs

IBM Skills Network Team
84 Cours1 583 513 apprenants
Dr. Pooja
IBM
4 Cours368 637 apprenants
Abhishek Gagneja
IBM
6 Cours243 900 apprenants
Romeo Kienzler
IBM
10 Cours795 398 apprenants
Joseph Santarcangelo
IBM
36 Cours2 203 076 apprenants
Polong Lin
IBM
6 Cours369 026 apprenants
Alex Aklson
IBM
21 Cours1 348 565 apprenants
Rav Ahuja
IBM
56 Cours4 403 562 apprenants
Saishruthi Swaminathan
IBM
2 Cours367 870 apprenants
Hima Vasudevan
IBM
4 Cours635 054 apprenants
Azim Hirjani
IBM
1 Cours302 070 apprenants

Offert par

IBM

Comparer avec des produits similaires

Évaluation
Niveau
Compétences
Outils
Dernière mise à jour
Nombre d'exercices pratiques
Éligibilité au diplôme
Partie de Coursera Plus

Vous aimerez peut-être aussi

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Coursera Plus

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions

¹ Median salary and job opening data are sourced from Lightcast™ Job Postings Report. Content Creator, Machine Learning Engineer and Salesforce Development Representative (1/1/2024 - 12/31/2024) All other job roles (11/1/2024 - 11/1/2025)